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The transfer of fibres in the carding machine
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Abstract. The problem of understanding the transfer of fibres between carding-machine surfaces is addressed by
considering the movement of a single fibre in an airflow. The structure of the aerodynamic flow field predicts how
and when fibres migrate between the different process surfaces. In the case of a revolving-flats carding machine
the theory predicts a “strong” aerodynamic mechanism between taker-in and cylinder and a “weak” mechanism
between cylinder and removal cylinder resulting in effective transfer in the first case and a more limited transfer
in the second.
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1. Introduction

1.1. BACKGROUND

The fundamental operations of yarn manufacture are carding, drawing, twisting and spinning.
Carding transforms the raw material, such as cotton, wool or polyester fibres, into a smooth
coherent web; by disentangling and ordering the fibres and eliminating unwanted materials.
Although manufacturing technology has improved the speed and efficiency of the process, the
underlying principles have not changed for over 100 years. Originally the process was done
by hand but now machines use huge arrays of hooks that tether and tease fibres or tufts at
speeds of up to 100 m/s.

In modern carding machines, as shown in Figure 1, fibres essentially come into contact
with hooks distributed on rapidly rotating cylinders and quasi-stationary flat plates. The first
of the three cylinders is called the “taker-in”, and this introduces the initially highly tangled
fibres, labelled the “lap”, into the carding machine. The hooked flat plates, known simply as
“flats”, adjacent to the largest cylinder, known as the “cylinder”, act to break down and tease
tufts into individual fibres. This leads to the formation of a smooth coherent web, called the
“sliver”, by the transferal of individual fibres from the main cylinder to the removal cylinder,
known as the “doffer”. In order to produce yarns, a number of further “macroscopic” defor-
mations are applied to the sliver, such as transverse compression, stretching and twisting, but
the physical properties of the resulting yarn depend critically on the formation of cohesive
structures during the carding process.

There are two regions in a short-staple carding machine where fibres are “stripped” or
transferred from one rotating cylinder to another: taker-in to cylinder and cylinder to dof-
fer. Experience shows that virtually all fibres successfully migrate from taker-in to cylinder
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Figure 1. A diagram of a revolving-flats, short staple, carding machine.

whereas there is a less successful migration between cylinder to doffer. The main aim of this
paper is to propose a mechanism for each transfer which explains this discrepancy.

The most obvious difference in the two fibre-transfer regions is the relative speed of the
adjacent cylinders. Typically on a revolving-flats carding machine, the surface speed of the
taker-in is 10 m/s, the cylinder is 35 m/s and the doffer is 1 m/s. The approximate hook heights
on the taker-in and cylinder are 5 mm and are spaced at 6 and 15 hooks per square centime-
ter, respectively, whereas the doffer hooks are several times larger, and the gap between the
hook tips varies but is no more than a few millimeters.

Although, initially many of the fibres are entangled, one can expect to find individual
fibres throughout the process and by the time the textile has reached the end of the revolving-
flats the tufts will be broken down into individual fibres; see [1]. Mathematical models for
teasing entangled textile fibres are presented in [2, 3]. For groups of many entangled fibres,
one would expect the faster cylinder to grab and remove tufts off the taker-in; the hooks on
the taker-in are not directed to oppose this motion. However at the doffer, the material must
transfer from the faster to the slower cylinder and the hooks on the doffer are, at first sight,
pointing in the wrong direction. A model describing the journey of a single fibre in the card-
ing machine is of particular importance, and the work in this paper goes some way to under-
standing this process.

1.2. OBJECTIVES

Understanding the mechanisms for fibre transfer between carding surfaces, will provide much
needed insight into general fibre dynamics during the process, machine design and process-
control optimisation, and the formation of the sliver. We will model the behaviour of a single
fibre in the transfer regions of a carding machine, and these results could easily be extended
to consider many fibres in a dilute suspension.

The approach of the work in this paper is in some sense a natural extension of the static
analysis completed in [4], which considers frictional forces acting on a single fibre in tension,
held by two hooks on opposing carding surfaces. The question this paper attempts to answer
is: “When does this scenario occur and, in particular, how are fibres that are tethered to a
hook on one carding surface presented to the hooks on another carding surface?”

A dimensional analysis shows that the dominant forces acting on a fibre are due to aero-
dynamic drag, which is contrary to current theories that suggest a centrifugal-force-driven
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transfer (a review of these is presented in [5]). The aerodynamics in the carding machine
involves complicated high-Reynolds-number flows generated by rapidly rotating, hooked
cylinders, which are certainly turbulent in some regions. High-speed photographic observa-
tions near the doffer and cylinder, just after the transfer region, are presented in [6], and the
experimental findings suggest that the flow is unsteady and probably turbulent. However, we
will use a global inviscid model that can be considered as either the mean turbulent flow or
the outer regime of a laminar boundary-layer flow to predict the aerodynamics in the trans-
fer regions, which can then be used to determine the dynamics of tethered fibres. Our theory
predicts two aerodynamic mechanisms that explain why the transfer rates between taker-in to
cylinder and cylinder to doffer are very different.

2. Fibre model

In this section we derive the forces acting on a single fibre in a given airflow. We consider a
fibre attached to a hook on a cylinder and take axes fixed in the cylinder as shown in Fig-
ure 2. These axes are rotating with angular velocity Ω and the fibre is tethered at a radial
distance of rc. A dimensional analysis of the governing equations allow us to determine the
dominant mechanisms for fibre transfer. Initially the equations will include effects due to lin-
ear and rotational acceleration of the fibre, drag and elasticity of the fibre.

Short wool, polyester and cotton are typical textiles that are carded in revolving-flats
machines. They share a number of physical characteristics, the most obvious being that they
all have small aspect ratios, ε = a

l �1, where a is the average diameter and l the average length
of a fibre; polyester fibres are typically 6 micron in diameter and 4 cm in length. Therefore,
we can approximate a fibre by its centre-line R(s, t)= (x(s, t), y(s, t), z(s, t))T , using s for arc
length along the fibre and t for time. The coordinates (x, y, z) represent a local frame of ref-
erence for a fibre attached to one of the cylinders, where R(0, t)=0 is the point at which the
fibre is tethered by a hook.

2.1. DRAG ON A FIBRE

Our approach assumes that the fibres are in a dilute suspension; this means that the presence
and dynamics of the fibres do not affect the fluid flow. The air velocity U is given relative to
the fibre velocity and due to axial symmetry we assume that the flow is two-dimensional.

Figure 2. A diagram of a fibre tethered by a hook on a rotating cylinder.
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The drag on a variety of different types of fibres were studied by Taylor [7]. This
semi-empirical work measured the force acting on a fibre set obliquely to a stream of fluid,
where the Reynolds numbers varied between 20 and 106. A range of drag laws are postulated
for different fibre surfaces, such as smooth, rough and hairy. In practice the Reynolds number
(Re= Ua

ν
) for flow around a fibre in the carding machine can vary by three orders of magni-

tude, usually in the range 1
2 to 102.

We define local orthonormal vectors for each point of a fibre with respect to the centre-line
to be (d1, d3), where d1 is normal and is in the cross-sectional plane and d3 is the tangent; see
Figure 2. Using φ(s, t) to represent the angle between the fibre’s tangent and the fluid-stream
direction, Taylor postulates that the drag term D per unit length for a hairy or bobbly surface,
when Re�1, is

D = cF
ρairaU 2

2
(− sin φ d1 + cosφ d3) , (1)

where |U |=U , φ ∈[0, π
2 ), ρair is the density of air and cF is a parameter that is related to the

specific surface properties and without loss of generality we will assume to be unity. Other
drag laws for smooth and rough fibres in [7] involve nonlinear terms in sin φ.

Alternatively, for Re�1 we can apply classical Stokes flow in the neighbourhood of a fibre
and the drag to leading order in ε for a smooth fibre is shown in [8] to be

D = 2πµU

log 2
ε

(−2 sin φ d1 + cosφ d3) , (2)

and µ is the viscosity of air. A number of other effects may also be considered from vari-
ous analytical studies of slow flow past nematic objects, such as small deviations in surface
geometry [9] and the effect of hydrodynamic interactions with other fibres [8].

To conclude, we see that the form of the drag term is similar in either case. On the taker-in
Re ≈O (10) and so we use the empirical approximation (1), whereas on the doffer the Rey-
nolds number is O(1) so it is appropriate to use the Stokes drag given by (2). It turns out
that the mechanism for transfer is not at all sensitive to which drag law is selected.

2.2. INTERNAL FIBRE FORCES

Most fibres are not straight and even man-made fibres are deliberately crimped in order to
produce more cohesive yarns. Although most textile fibres have bending moduli of the same
order of magnitude, their natural shapes can vary considerably; see [10, Chapters 1 and 17].
For natural fibres a distribution of shapes occur due to the conditions during their formation
whereas the uniform crimp in man-made fibres is regulated by machinery. Thus each fibre will
have a natural curvature and given cross-sectional area. We begin by treating our fibre as a
flexible, inextensible, circular, elastic rod and use Kirchhoff’s equations to model its deforma-
tion [11, Chapter XVIII]. We write down the geometrical relationship, that the fibre tangent
is normal to the cross-sectional plane,

∂ R
∂s

= d3. (3)

We define the stress resultant vector N(s, t) and the couple resultant vector M(s, t) to be

N(s, t)=
3∑

i=1

Ni (s, t)di (s, t), M(s, t)=
3∑

i=1

Mi (s, t)di (s, t), (4)
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where N1 and N2 are the shear forces and M1 and M2 are the bending moments along the
principal axes of the cross-sectional plane, while N3 is the tensile force and M3 is the twisting
moment. Balancing forces and couples at each cross section in a rotating frame, with angular
velocity Ω=Ωk, gives

∂ N
∂s

+ D = Aρ

(
∂2 R

∂t2
+2 Ω∧ ∂ R

∂t
+Ω∧ (Ω∧ (R + rc j))

)
, (5)

∂ M
∂s

+ ∂ R
∂s

∧ N =ρ I
2∑

i=1

(
∂2di

∂t2
+2 Ω∧ ∂di

∂t
+Ω∧ (Ω∧ di )

)
∧ di , (6)

where I is the coefficient of inertia, A is the cross-sectional area, and ρ is the density of the
fibre. To complete the Equations (4)–(6) we use the Euler–Bernoulli constitutive law, which
relates moments linearly with components of curvature (i.e., the rotational strain):

M = E I (κ1d1 +κ2d2)+ G Jκ3d3; (7)

here E is the Young’s modulus, G is the shear modulus, J is the polar moment of inertia, and
the κi ’s are the components of curvature. Equation (7) holds for a naturally straight rod; if
a fibre is not uniformly straight, we need to interpret κi in (7) as the variations in curvature
from the natural state.

In order to capture the important terms, we derive a dimensionless form to equations (5)–
(6). Appropriate scalings for each variable are:

s = ls̄, R = l R̄, κi = κ̄i

l
, t = l

Ωrc
t̄,

D = D D̄, N = l D N̄, M = E I

l
M̄,

where the dimensionless quantities are denoted by an over-bar. The typical body force D rep-
resents the magnitude of the drag terms D, which for Taylor drag will be ρairar2

c Ω2/2 and for
slow flow 2πµrcΩ/log 2

ε
as discussed in Section 2.1. Equations (5) and (6) become

∂ N̄
∂ s̄

+ D̄ =�1

(
∂2 R̄

∂ t̄2
+ δk ∧ ∂ R̄

∂ t̄
+ δk ∧ (

k ∧ (δ R̄ + j)
)
)

, (8)

∂ M̄
∂ s̄

+�2
∂ R̄
∂ s̄

∧ N̄ =�3

2∑

i=1

(
∂2di

∂ t̄2
+ δ2k ∧ (k ∧ di )+ δk ∧ ∂di

∂ t̄

)
∧ di , (9)

respectively, where we have assumed that the wavelength of the crimp is comparable to the
length of the fibre. This results in three important parameters:

�1 = ρ AΩ2r2
c

l D
, �2 = l3 D

E I
, �3 = ρΩ2r2

c

l E
, δ = l

rc
, (10)

where �1 represents fibre acceleration over drag, �2 is drag over flexural rigidity, �3 is the
torque over elastic modulus and δ is the ratio of fibre length to cylinder radius. Since δ is
always small, the additional terms in Equation (8), due to Coriolis and centrifugal accelera-
tions, are small and we will ignore them from now on.

The above analysis leaves us with a number of parameters that will indicate the dominant
mechanisms of fibre transport and will allow us to simplify the models accordingly. On both
the taker-in and cylinder �2 � 1 and �3 � 1, and this suggests that in (9), the rotational
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acceleration can be neglected and the fibre’s elastic properties cannot compete with the drag
induced by the fluid flow. Therefore the textile can be modelled as a string. Now �1 varies
between O(10−1) and O(1), so we regard it as small for the purpose of providing a simple
illustration and proceed with a quasi-steady approximation. Since the Re = O(10) based on
the surface speeds of the cylinder or taker-in, we will also use the Taylor drag (1) in the fol-
lowing analysis. As explained above, the results are qualitatively the same if we use alternative
drag law (2).

2.3. EQUATION FOR A QUASI-STEADY TETHERED STRING

We now focus our attention on two-dimensional quasi-steady simulations with Taylor drag,
as this could represent fibre dynamics on the taker-in and cylinder. The governing equations
for deformations in an elastica, (8) and (9), where we now remove the over-bars, and neglect
smaller quantities, reduce to

∂ N
∂s

+ D =0, (11)

∂ R
∂s

∧ N =0. (12)

Equation (12) implies that the stress resultant only has components in the direction of the
tangent and we write N3 = T so that N = T (s, t)d3. We use the inextensibility constraint to
close the system of equations:

d3 · d3 =1. (13)

The fibre equations incorporate a general fluid velocity U = (u, v), and

φ(s)= θ(s)−arctan
(u

v

)
, (14)

where θ is the angle between fibre tangent and the cylinder surface (see Figure 2). The dimen-
sionless governing equations (11) now read:

dT

ds
+ (u2 +v2) cosφ =0, (15)

T
dθ

ds
− sgn(φ)(u2 +v2) sin φ =0, (16)

dx

ds
− cos θ =0, (17)

dy

ds
− sin θ =0. (18)

It remains to apply boundary conditions, and we use the fact that the fibre is free at the non-
tethered end s =1 and fixed geometrically at the other end s =0,

T (1)=0, x(0)=0, y(0)=0. (19)

The angle of the free end θ(1) needs to be found by solving the equation

sin φ(1)=0, (20)

which is due to the no-tension condition from (19) that would otherwise cause a singularity in
(16). This leaves us with a fourth-order system of coupled ordinary equations (15)–(18) with
four boundary conditions (19) and (20) to determine the position of a given fibre in a given
flow (u, v).
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3. Aerodynamics

We now turn our attention to the fluid flow. The Reynolds numbers of fluid flow in the
machine vary from O(104) and O(106) and so we expect it to be turbulent. This can be mod-
elled by an inviscid mean flow when the Reynolds stresses are small. If the flow is laminar,
an inviscid approximation will also be adequate, except when close to the machine surfaces.
We do not attempt to model the effect of the hooks but one expects that they act as vortex
generators and would encourage turbulent behaviour.

To elucidate the basic flow structure we consider a simple two-dimensional incompress-
ible, irrotational and inviscid flow. Transfer occurs in regions between two cylinders, c+ and
c−, of radius r+ and r− counter-rotating with angular velocities Ω+ and Ω− in close proxim-
ity to each other; see Figure 3. We prescribe no-penetration conditions and circulations �+
and �− around each drum. This is equivalent to placing a point vortex within each cylinder.
Note that a cylinder, of radius r , rotating in an infinite fluid at high-Reynolds-number flow
will eventually create a circulation �= 2πr2Ω when rotating at angular velocity Ω and thus
�− =2πΩ−r2− and �+ =2πΩ+r2+ are plausible values to take.

There are a number possible flow topologies that can occur as a consequence of variations
in the circulations �+ and �−. However, in the case of the carding machine, the larger cylin-
der c+ is moving considerably faster than the smaller one c− and so drives a rotational flow
round both doffer and taker-in; the magnitude of �+ will be much greater than the magni-
tude of �−. However, the counter-rotation of c− affects the flow in the gap between the cylin-
ders. This situation is illustrated in Figure 3, with two stagnation points on the smaller, slower
cylinder. The large cylinder will entrain fluid, some of which will be ejected onto the smaller
cylinder, when approaching the nip-regions between the drums. We postulate that the airflow
near the stagnation points is the critical area for fibre transport and different fibre-transfer
mechanisms occur in going from the large and fast cylinder to a smaller slower cylinder or
vice versa as described in the next two sections.

The flow illustrated in Figure 3 is a gross simplification and in reality will be modified by
boundary-layer effects, the effect of the hooks and the presence of other machine surfaces, but
the changes in the mean flow direction near a stagnation point will still occur and this is the
mechanism that we need to effect transfer of fibres from one cylinder to another.

Figure 3. The flow topology for two neighbouring counter-rotating cylinders. The gap width between the cylinders
is greatly exaggerated in this figure to allow the basic flow structure to be clearly illustrated.
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4. Strong transfer

We use the term “strong transfer” to describe the process that occurs in going from the taker-
in to the cylinder. In this section we describe a theoretical scenario that shows how single
fibres will transfer, due to aerodynamic forces, without being in simultaneous contact with
hooks on the taker-in and cylinder. This means that the transfer mechanism is purely aero-
dynamic and does not involve the cylinder and taker-in hook competition described by [4].

We consider the flow near the taker-in as a fibre is transported into the stagnation region,
and assume that the flow is of the type illustrated in Figure 3, where two stagnation points
reside on the taker-in. Figure 4(a) illustrates the flow near the stagnation points on the taker-
in; both surfaces move from right to left in the diagram but the cylinder moves at greater
velocity. We use a simplified flow containing two stagnation points in order to see how a fibre
connected to a hook on the taker-in is affected by this type of flow. First, we introduce global
coordinates (X ,Y ) where the stagnation points are placed at X = ±a on an infinite plate at
Y = 0; see 4(b). The complex potential for a particular flow field containing two stagnation
points on y =0 is w(z)= A0

(
z3

3 − za2
)

, with components of velocity

u = A0(X2 −Y 2 −a2), v =−2A0 XY, (21)

and the streamlines are also illustrated in Figure 4(b). This flow is used to simulate the
motion of the fibre shown in Figure 5 using the quasi-steady model (15)–(20). The point at
which the fibre is tethered R(s = 0) = (X,YT ), moves from right to left, so X decreases for
some fixed YT .

As a fibre moves from the right to the first stagnation point at X = a, its displacement
will not alter significantly nor will the aerodynamic forces lift the fibre away from the taker-in

(a)

(b)

Figure 4. Flow for strong transfer. (a) Schematic diagram of the strong transfer region. (b) Stagnation flow stream-
lines.

(a) (b)–

–

–

–

–

–

Figure 5. Strong transfer for stagnation point flow where a = ±1; the tethered point YT moves from right to left,
x(0)= X decreasing from 1·5 to 0·5 and passes through the stagnation streamline near X =1. (a) Fibre angle at s =0
(b) Fibre tension at s =0.
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surface. As the fibre moves past the stagnation streamline at X ≈ a, the fluid begins to drag
the fibre towards the cylinder surface. At this point in time the tethered angle θ(0) decreases
more dramatically and the tension T (0) tends to zero, making it more likely that the fibre-
hook contact point will slip and the fibre will free itself from the hook altogether; see Figure
5. The fibre when free will be transported away from the surface at Y =0 and will migrate to
the cylinder, since in the case of negligible inertia it is known that a fibre will rapidly align
with the flow [12].

5. Weak transfer

A weaker transfer occurs between the cylinder and doffer. The build-up of fibres on the cyl-
inder has been studied in some detail, and it is observed that only a small proportion of the
fibres on the cylinder are transferred from the cylinder to the doffer; see [5]. Although the
flow regime is again assumed to be of the type illustrated in Figure 3, this time the fibres are
on the cylinder while the stagnation points are on the doffer as shown in Figure 6(a). Note
that the direction of the cylinder has been reversed for ease of comparison with the strong
transfer mechanism. When a fibre is transported from right to left along the X -axis, the trail-
ing ends of the tethered fibres will be dragged towards the doffer by the upward flow. The
maximum altitude of the trailing end, depends on the locality of the neighbouring surface Y =
hp and height of the tethered point y(0)=YT .

To illustrate this process, we calculate the position of a fibre tethered by hooks on the cyl-
inder as it moves toward the doffer on which two stagnation points reside. We have chosen
to use a stagnation point flow with a fixed semi-infinite plate at Y = hp and a parallel infi-
nite plate at Y =0, see diagram 6(b), as we are interested in the first stagnation point of the
flow because it is in this region the airflow will lift the fibre toward the adjacent surface. The
infinite lower plate represents the surface of the cylinder. If the high-Reynolds-number flow is
laminar, the leading-edge region is predominantly governed by Euler’s equations which match
onto boundary layers on both plates. We will use an inviscid solution given by [13] for the
flow and then solve Equations (14)–(20) for an inextensible fibre.

In Figure 7, we show quasi-steady animations of a fibre that moves underneath the stag-
nation point. We note that the hooks on the doffer will typically occupy the majority of the
region 0<Y <h p, and so in both cases shown there will be a good chance of interaction with
the doffer hooks. It is not the case that all fibres that are presented will actually make contact
with a hook, and to compute the likelihood of interaction one would need to consider the
volume fraction of doffer hooks in the stagnation region. Once the fibres come into contact
with a doffer hook, there will be a competition between the frictional properties of the doffer
and cylinder hooks and this, along with the way the fibre is presented to the doffer hook, the

(a)
(b)

Figure 6. Flow for weak transfer. (a) Schematic diagram of the weak-transfer region. (b) Streamlines for parallel
infinite and semi-infinite plates set at a distance hp =0·5 apart.



270 M.E.M. Lee and H. Ockendon

(a) (b)

Figure 7. Displacements of a fibre attached at height YT = 0·1 as it moves from the right towards the stagnation
point B. Figure (b) includes the hooks to which the fibres are tethered.

changing angle of attachment θ(0) to the cylinder hook and the hook geometries will deter-
mine when transfer occurs. In the case of weak transfer, the static competition described by
[4] will then be appropriate to complete the transfer model.

6. Conclusion

We have postulated a theory of how individual fibres behave in the carding machine. In a sim-
ple dimensionless analysis, we eliminated the possibility of centrifugally driven transfer the-
ories, and highlighted the importance of aerodynamics within the carding process. Looking
at the mean airflow, stagnation-point flows occur in the transfer regions between cylinders in
the carding machine. These produce two very different transfer mechanisms near the leading
stagnation point: the strong mechanism occurs between taker-in and cylinder where all fibres
migrate to the cylinder surface as the tension holding the fibre to the hook decreases to zero
and the weak mechanism between cylinder and doffer where only a proportion of fibres trans-
fer to the doffer by slipping off one set of hooks and being caught or held by the other.

The experimental observations in [6] provide some evidence that supports our aerodynam-
ically driven transfer mechanisms described above. Their observations focussed on the region
between doffer and cylinder, just after the point where fibres transfer from cylinder to doffer.
This coincides with the region close to the second stagnation point in Figure 6(a). Figures
11, 12 and 14 in [6] show fibres that have already transferred from cylinder to doffer, being
entrained by the fluid away from the doffer surface back towards the cylinder. As the fibres
are tethered to the doffer, a surface upon which stagnation points reside, the local fluid flow
relative to the fibre will be similar to the strong-transfer-mechanism aerodynamics depicted in
Figure 4, in particular the region close to the left stagnation point. The reason why there is
far greater retention of fibres on the doffer, when compared to similar fluid-entrained dynam-
ics on the taker-in, is the hook size and more importantly the angle; see Figure 1; the doffer
hooks oppose the fibre motion away from the doffer surface.

The “micro-scale” work in this paper could be used to complement carding-machine models
that employ “macroscopic” variables such as fibre density, and assume probabilistic transfer
rates between carding surfaces, such as [14–17]. The “macroscopic” parameters within these
models are chosen by comparison with experimental data. By using the simulations and models
explored in this paper, we could relate the large-scale model parameters to hook geometry and
density, fibre-hook friction, fibre length, cylinder geometry and linear surface speeds.

Acknowledgements

We wish to express our gratitude to the EPSRC (Grant GR/L62153) and Crosrol Ltd. who
funded the interdisciplinary project through which this research was undertaken. We are



The transfer of fibres in the carding machine 271

also grateful to Prof C. Lawrence, Dr. Abbas, Mr. B. Greenwood, Dr. C. Iype and Dr. M.
Mahmoudi of the Department of Textile Industries at Leeds University and Dr. M. Jones of
the School of Mathematics, University of Southampton for many useful discussions.

References

1. A. Dehghani, C.A. Lawrence, M. Mahmoudi, B. Greenwood and C. Iype, An assessment of changes in the
state of fibre mass during the early stages of the carding process. J. Textile Inst. 91 (2000) 359–373.

2. M.E.M. Lee and H. Ockendon, A continuum model for entangled fibres. Eur. J. Appl. Math. 16 (2005) 145–160.
3. G. Kozyreff, M.E.M. Lee and H. Ockendon, Towards understanding the internal forces in a tuft of fibres.

Submitted.
4. Y.A. Baturin, The load of the surfaces and the proportion of fibre transferred between the surfaces. Technol.

Textile Industry, U.S.S.R. 4 (1964) 37–43.
5. C.A. Lawrence, A. Dehghani, M. Mahmoudi, B. Greenwood and C. Iype, Fibre dynamics in the revolving-

flats card, part 1, a critical review. AUTEX Res. J. 1 (2000) 64–77.
6. A. Dehghani, C.A. Lawrence, M. Mahmoudi, B. Greenwood and C. Iype, Aerodynamics and fibre transfer

at the cylinder-doffer interface. J. Textile Inst. 95 (2004) 35–49.
7. G.I. Taylor, Analysis of the swimming of long and narrow animals. Proc. R. Soc. London A 214 (1952)

158–183.
8. R.G. Cox, The motion of long slender bodies in a viscous fluid part 1. General theory. J. Fluid Mech. 44

(1970) 791–810.
9. G.K. Batchelor, Slender-body theory for particles of arbitrary cross-section in stokes flow. J. Fluid Mech. 44

(1970) 419–440.
10. W.E. Morton and J.W.S. Hearle, Physical Properties of Textile Fibres. London: William Heinemann (1975)

660 pp.
11. A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge: Cambridge Univer-

sity Press (1927) 643 pp.
12. E.J. Hinch, The distortion of a flexible inextensible thread in a shearing flow. J. Fluid Mech. 74 (1976) 317–333.
13. M.A. Jones and F.T. Smith, Fluid motion for car undertrays in ground effect. J. Engng. Math. 45 (2003) 309–334.
14. A.S. Abhiraman and W. George, A new aspect of the stochastic nature of carding. Textile Res. J. 43 (1973)

452–467.
15. H.M. Gutierrez, J.P. Rust and A.F. Seyam, Modeling and simulation for control carding. Textile Res. J. 65

(1995) 638–643.
16. J.P. Rust and H.M. Gutierrez, Mathematical modeling and simulation for carding. Textile Res. J. 64 (1994)

573–578.
17. L.D. Wibberly and W.W. Roberts Jr., Modeling the diffusive transport of bulk fiber mass in a card. Textile

Res. J. 67 (1997) 296–308.


